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Abstract. Transversal homoclinic orbits of maps are known to generate shift dynamics on a
set with Cantor-like structure. In this paper a numerical method is developed for computation of
the corresponding homoclinic orbits. They are approximated by finite-orbit segments subject to
asymptotic boundary conditions. We provide a detailed error analysis including a shadowing-type
result by which one can infer the existence of a transversal homoclinic orbit from a finite segment.
This approach is applied to several examples. In some of them parameters appear and closed loops
of homoclinic orbits are found by a path-following algorithm.
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1. Introduction. One of the fundamental results on chaotic behavior in dis-
crete dynamical systems is Smale’s homoclinic theorem; see [24], [22], [23]. For a
more recent overview of homoclinic orbits, their bifurcations, and the history of their
discovery, we refer the reader to [20].

Consider a (time-)discrete system

xn+1 = f(xn), n ∈ Z(1)

with a Cl-diffeomorphism f : Rk → Rk and assume that ξ ∈ Rk is a hyperbolic
fixed point of f ; i.e., the Jacobian f ′(ξ) has no eigenvalues on the unit circle. Further
assume that x0 is a transversal homoclinic point, which means that the orbit generated
by (1) satisfies

lim
n→+∞ xn = lim

n→−∞ xn = ξ(2)

and the stable and unstable manifolds of ξ intersect transversally at x0. Then the
theorem states that there exists a compact set M and an integer p such that the pth
iterate of f , denoted by fp, leaves M invariant and is topologically conjugate on M
to the Bernoulli shift on two symbols. It is remarkable that this chaotic behavior on
a certain subset is created by a homoclinic point that is transversal, a property that
persists under the perturbation of system (1).

The perturbation stability of transversal homoclinic points suggests that we should
be able to compute these points numerically in a robust and stable way. This is the
topic of the present paper. Instead of homoclinic points our approach aims at com-
puting the complete homoclinic orbit xZ = (xn)n∈Z by solving the “boundary value
problem” (1), (2). Any direct method for the single homoclinic point x0 implicitly
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1208 W.-J. BEYN AND J.-M. KLEINKAUF

tries to solve this boundary value problem and hence is prone to the usual shooting-
type method difficulties caused by exponential divergence of trajectories.

Therefore we propose to approximate the infinite orbit by an orbit segment of
finite length xJ = (xn− , . . . , xn+), J = {n−, . . . , n+} that satisfies a “finite boundary
value problem”

xn+1 = f(xn), n = n−, . . . , n+ − 1,(3)
b(xn− , xn+) = 0.(4)

Here (4) is a general set of boundary conditions defined by a smooth mapping b :
Rk × Rk → Rk. Together, (3) and (4) comprise a set of (n+ − n− + 1)k nonlinear
equations for the same number of unknowns. We solve this system by Newton’s
method and take advantage of the sparsity pattern of the corresponding Jacobian.

The most important examples for (4) are periodic boundary conditions

b(xn− , xn+) = xn+ − xn− = 0(5)

and projection boundary conditions

b(xn− , xn+) = (b−(xn−), b+(xn−)) = 0,(6)

where the zero sets of b− and b+ are linear approximations to the local unstable and
stable manifold of the fixed point.

The whole approach closely mimics the well-known methods for approximating
homoclinic orbits of parametrized continuous systems ẋ = f(x, λ) on finite intervals
[9], [4], [2], [11]. But there is one important difference to keep in mind. In the
discrete case stable and unstable manifolds can, and in the generic sense do, intersect
transversally at a homoclinic point, while in the continuous case both tangent spaces
always contain the flow direction. If the manifolds intersect at all in a continuous
system they do so in a whole curve obtained by shifting the phase of the orbit.
Therefore one parameter is needed for homoclinic orbits to occur generically in a
continuous system and an additional constraint is needed to fix the arbitrary phase.

The paper is organized as follows. In section 2 we collect the necessary prerequi-
sites from the theory of exponential dichotomies for difference equations. This section
is largely based on the paper of Palmer [22], where exponential dichotomies are used
to prove the shadowing lemma and Smale’s homoclinic theorem. Earlier references
on dichotomies for difference equations include [5] and [15].

Section 3 contains the basic results of this paper. In a neighborhood of a transver-
sal homoclinic orbit we find a unique solution of the equations (3), (4) provided b
satisfies a nondegeneracy condition and n−, n+ are taken sufficiently large. We also
show error estimates that are analogous to the continuous case.

In section 4 we treat several examples including the Poincaré map for the Duffing
system. We also compute branches of discrete homoclinic orbits in cases where the
system (1) contains a parameter. Using a standard continuation procedure (see [1])
we can easily pass through turning points of these branches. At such turning points
the homoclinic orbits actually become nontransversal.

In section 5 we take up the question of converse theorems which, given a solution
of the finite boundary value problem (3), (4), guarantee the existence of a transversal
homoclinic orbit. This is in the spirit of the recent shadowing-type results as in [6],
[7], except that here we conclude the existence of an infinite sequence, rather than a
continuous orbit, from the knowledge of a finite orbit.
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COMPUTATIONS OF HOMOCLINICS FOR MAPS 1209

We emphasize that we do not intend a computational verification of the existence
of a homoclinic orbit as in [19], where interval analysis is used to verify an exact
homoclinic orbit by a pseudo-orbit.

2. Exponential dichotomies for difference equations. In this section we
review some basic tools from the theory of exponential dichotomies [22] and we add
a few results that are useful later on. Consider a homogeneous difference equation in
Rk

un+1 = Anun, n ∈ Z, An ∈ Rk,k nonsingular(7)

with solution operator

Φ(n, m) =


An−1 · · · · · Am if n > m,

I if n = m,
A−1

n · · · · · A−1
m−1 if n < m.

In the following let

J = {n ∈ Z : n− ≤ n ≤ n+}, n± ∈ Z ∪ {±∞}, n− ≤ n+

be any interval in Z. If no confusion with real intervals arises we simply write J =
[n−, n+]. We also make frequent use of the Banach space of bounded sequences on J
given by

SJ = {uJ = (un)n∈J ⊂ (Rk)J : ‖uJ‖∞ := sup
n∈J

‖un‖ < ∞}.

DEFINITION 2.1. The difference equation (7) has an exponential dichotomy on J
if there exist projectors Pn, n ∈ J , in Rk and constants K, α > 0 such that

PnΦ(n, m) = Φ(n, m)Pm for all n, m ∈ J

and

‖Φ(n, m)Pm‖ ≤ Ke−α(n−m)

‖Φ(m, n)(I − Pn)‖ ≤ Ke−α(n−m) for all n ≥ m in J.

For brevity we will say that (7) has an exponential dichotomy on J with data
(K, α, Pn). It is easy to see that this implies that the adjoint equation

ϕn+1 = (A−1
n+1)

T ϕn, n ∈ Z(8)

has an exponential dichotomy on J − 1 = {n− − 1, . . . , n+ − 1} with data (CK, α, I −
PT

n+1), where C is a constant such that

‖AT ‖ ≤ C‖A‖ for all A ∈ Rk,k.

Notice that the solution operator of (8) is given by

Φ∗(n, m) := Φ(m + 1, n + 1)T , n, m ∈ Z.

On semifinite intervals J = [n−, ∞) the ranges of the projectors Pn are uniquely
determined and we can solve inhomogeneous equations of the type

un+1 = Anun + rn, n ≥ n−, Pn−un− = µ ∈ R(Pn−)(9)

according to the following lemma (cf. [22, Proposition 2.3, Lemma 2.7]).
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1210 W.-J. BEYN AND J.-M. KLEINKAUF

LEMMA 2.2. Let (7) have an exponential dichotomy on J = [n−, ∞) with data
(K, α, Pn). Then for any n ≥ n− we have

R(Pn) = {u ∈ Rk : sup
j≥n

‖Φ(j, n)u‖ < ∞}.

Suppose that (L, β, Qn) is another set of dichotomy data on J . Then R(Qn) = R(Pn)
holds and we have the estimate

‖Qn − Pn‖ ≤ KLe−(α+β)(n−n−)‖Qn− − Pn−‖, n ∈ J.

For any µ ∈ R(Pn−) and any bounded sequence rJ ∈ SJ the system (9) has a
unique bounded solution uJ ∈ SJ which satisfies

‖uJ‖∞ ≤ K

(
1 + e−α

1 − e−α
‖rJ‖∞ + ‖µ‖

)
.(10)

Similarly, in the case J = (−∞, n+] we have

N (Pn) = {u ∈ Rk : sup
j≤n

‖Φ(j, n)u‖ < ∞}

and the inhomogeneous equation

un+1 = Anun + rn, n ≤ n+ − 1, (I − Pn+)un+ = µ ∈ N (Pn+)(11)

has a unique bounded solution which again satisfies (10).
In the next step we consider the case J = Z, but merely assume that (7) has

dichotomies on Z− and Z+ separately. The following lemma is the discrete analogue
of [21, Lemma 4.2].

LEMMA 2.3. Let un+1 = Anun have an exponential dichotomy on Z− with data
(K−, α−, P−

n ) and on Z+ with data (K+, α+, P+
n ), and assume that An and A−1

n are
uniformly bounded. Then the operator

L :
SZ → SZ
uZ 7→ (un+1 − Anun)n∈Z

is Fredholm of index rank(P+
0 ) − rank(P−

0 ) and

dimN (L) = dim(R(P+
0 ) ∩ N (P−

0 )),
codimR(L) = codim(R(P+

0 ) + N (P−
0 )).

(12)

Let L∗ : SZ → SZ be defined by

L∗ϕZ = (ϕn+1 − (A−1
n+1)

T ϕn)n∈Z;

then dimN (L∗) = codimR(L) and

rZ ∈ R(L) ⇐⇒
∑
n∈Z

ϕT
n rn = 0 for all ϕZ ∈ N (L∗).(13)

Proof. From Lemma 2.2 it follows that any µ ∈ R(P+
0 ) ∩ N (P−

0 ) defines an
element

(Φ(n, 0)µ)n∈Z ∈ N (L)
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COMPUTATIONS OF HOMOCLINICS FOR MAPS 1211

and that this map is an isomorphism; hence

dimN (L) = dim(R(P+
0 ) ∩ N (P−

0 )).

In a similar way we use the exponential dichotomy of L∗ on (−∞, −1] and on [−1, ∞)
with the projectors I − (P−

n+1)
T and I − (P+

n+1)
T , respectively. An application of

Lemma 2.2 with n− = −1 yields that

η 7→ (Φ∗(n, −1)η)n∈Z

is an isomorphism from

R(I − (P+
0 )T ) ∩ N (I − (P−

0 )T ) = R(P+
0 )⊥ ∩ N (P−

0 )⊥

= (R(P+
0 ) + N (P−

0 ))⊥

onto N (L∗). Therefore

dimN (L∗) = codim(R(P+
0 ) + N (P−

0 )).(14)

For the proof of (13) we first notice that
∑

n∈Z ϕT
n rn exists for all ϕZ ∈ N (L∗),

rZ ∈ SZ since ϕn decays exponentially as n → ±∞. Assuming LuZ = rZ for some
uZ ∈ SZ, we find∑

n∈Z

ϕT
n rn =

∑
n∈Z

ϕT
n (un+1 − Anun) =

∑
n∈Z

(ϕT
n−1 − ϕT

nAn)un = 0.

For a proof of the converse in (13) we let u+
n , n ≥ 0 and u−

n , n ≤ 0 be the
solutions of the initial value problem (9) and (11) with n− = 0, P+

0 u+
0 = 0 and

n+ = 0, (I − P−
0 )u−

0 = 0, respectively.
Next we show

u−
0 − u+

0 ∈ R(P+
0 − (I − P−

0 )).(15)

Any η ∈ R(P+
0 − (I − P−

0 ))⊥ satisfies ηT (P+
0 − (I − P−

0 )) = 0 and

(I − (P+
0 )T )η = (P−

0 )T η ∈ R(I − (P+
0 )T ) ∩ R((P−

0 )T ).

We conclude that ϕZ = (Φ∗(n, −1)(P−
0 )T η)n∈Z is an element of N (L∗) and hence by

our assumptions

0 =
∑
n∈Z

ϕT
n rn

=
∑
n≥0

ϕT
n (u+

n+1 − Anu+
n ) +

∑
n≤−1

ϕT
n (u−

n+1 − Anu−
n )

=
∑
n≥0

(ϕT
n − ϕT

n+1An+1)u+
n+1 − ϕT

0 A0u
+
0

+
∑

n≤−2

(ϕT
n − ϕT

n+1An+1)u−
n+1 + ϕT

−1u
−
0

= ϕT
−1u

−
0 − ϕT

−1u
+
0

= ηT (P−
0 u−

0 − (I − P+
0 )u+

0 )
= ηT (u−

0 − u+
0 ).
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1212 W.-J. BEYN AND J.-M. KLEINKAUF

Thus (15) holds and there exists some µ ∈ Rk such that

(P+
0 − (I − P−

0 ))µ = u−
0 − u+

0 .

From this relation we find that the sequence

un =
{

Φ(n, 0)(I − P−
0 )µ + u−

n , n ≤ 0,
Φ(n, 0)P+

0 µ + u+
n , n ≥ 0

is consistently defined at n = 0 and satisfies LuZ = rZ. Therefore rZ ∈ R(L) holds.
From (13) we obtain dimN (L∗) = codimR(L) as follows. Let {ηi} be an or-

thogonal basis of R(P+
0 )⊥ ∩ N (P−

0 )⊥. Then we know that the sequences ϕi
Z =

(Φ∗(n, −1)ηi)n∈Z form a basis of N (L∗) and it is easy to verify with the help of
(13) that the sequences ui

Z = (δ−1,nηi)n∈Z form a basis in SZ/R(L).
Finally, we can compute the Fredholm index of L from (12) and (14):

ind(L) = dimN (L) − codimR(L)
= dim(R(P+

0 ) ∩ N (P−
0 )) − (k − dim(R(P+

0 ) + N (P−
0 )))

= dimR(P+
0 ) + dimN (P−

0 ) − k

= rank(P+
0 ) − rank(P−

0 ).

In the special case where rank(P+
0 ) = rank(P−

0 ) the operator L is Fredholm of
index 0. If, in addition, N (L) = {0} holds, then for any rZ ∈ SZ the inhomogeneous
system

un+1 = Anun + rn, n ∈ Z(16)

has a unique solution uZ ∈ SZ. More precisely, by [22, Proposition 2.6, Lemma 2.7]
we have the following lemma.

LEMMA 2.4. The difference equation (7) has an exponential dichotomy on Z if
and only if it has one on Z− and Z+ separately with projectors of equal rank and if (7)
has no bounded nontrivial solution. In case one of these equivalent assertions holds
then the system (16) has a unique solution uZ ∈ SZ for each rZ ∈ SZ which satisfies

‖uZ‖∞ ≤ K
1 + e−α

1 − e−α
‖rZ‖∞.

Here (K, α, Pn) are the dichotomy data on Z.
Finally, we need the following consequence of the roughness theorem; see [22,

Proposition 2.10, Remark 2.11].
PROPOSITION 2.5. Consider two difference equations

un+1 = Anun, un+1 = Bnun, n ≥ 0

with nonsingular matrices An, Bn ∈ Rk,k such that

An − Bn → 0 as n → ∞.(17)

Assume that un+1 = Anun has an exponential dichotomy on Z+ with data (K, α, Pn)
and let 0 < β < α. Then the system un+1 = Bnun has an exponential dichotomy on
Z+ with suitable data (L, β, Qn), where Qn has the same rank as Pn and

Pn − Qn → 0 as n → ∞.(18)
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COMPUTATIONS OF HOMOCLINICS FOR MAPS 1213

Proof. Because of (17) we can choose N0 such that the roughness theorem [22,
Proposition 2.10, Remark 2.11] yields an exponential dichotomy for un+1 = Bnun on
any interval [N, ∞), N ≥ N0 with data (K1, β, Q

(N)
n ) as well as an estimate

‖Pn − Q(N)
n ‖ ≤ C1 sup

ν≥N
‖Aν − Bν‖ for n ≥ N.

We notice that the constants C1, K1, and β are independent of N and the projectors
Pn and Q

(N)
n are of equal rank if N0 is taken sufficiently large. For a given ε > 0 we

may choose N1 ≥ N0 such that

C1 sup
ν≥N1

‖Aν − Bν‖ ≤ ε

2
.

An application of Lemma 2.2 with J = [N1, ∞) yields

‖Q(N1)
n − Q(N0)

n ‖ ≤ K2
1e−2β(n−N1)‖Q

(N1)
N1

− Q
(N0)
N1

‖ for n ≥ N1.

Therefore we can select N2 ≥ N1 such that

‖Q(N1)
n − Q(N0)

n ‖ ≤ ε

2
for n ≥ N2.

By the triangle inequality we obtain

‖Pn − Q(N0)
n ‖ ≤ ε for all n ≥ N2,

which proves (18). Finally, the exponential dichotomy on [N0, ∞) easily carries over
to [0, ∞) after adjusting the constant K1 (cf. [22, Remark 2.2]).

3. Approximation of transversal homoclinic orbits. Let f : Rk → Rk be
a C1-diffeomorphism with a fixed point ξ ∈ Rk. We call xZ = (xn)n∈Z a homoclinic
orbit with respect to ξ if the following holds:

xn+1 = f(xn) for n ∈ Z,(19)
lim

n→±∞ xn = ξ.

We may write (19) as an operator equation

Γ(xZ) = 0,

where the C1-operator Γ : SZ → SZ is defined by

Γ(xZ) = (xn+1 − f(xn))n∈Z.

In our definition we have included the trivial case xn = ξ for all n ∈ N. All
the results of the following sections also hold for this trivial case. Of course, in the
applications we are only interested in nontrivial orbits.

Assume that ξ is a hyperbolic fixed point and consider λs < 1 < λu such that
each stable eigenvalue λ of f ′(ξ) satisfies |λ| < λs and each unstable one satisfies
|λu| < |λ|. Let Rk = Xs ⊕Xu be the corresponding decomposition into the stable and
unstable subspaces of f ′(ξ) and let us choose the norm in Rk such that the following
holds (see [16]):

‖x‖ = max(‖xs‖, ‖xu‖), x = xs + xu, xs ∈ Xs, xu ∈ Xu,(20)
‖f ′(ξ)nxs‖ ≤ λn

s ‖xs‖, xs ∈ Xs, n ≥ 0,(21)
‖f ′(ξ)nxu‖ ≤ λn

u‖xu‖, xu ∈ Xu, n ≤ 0.(22)
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1214 W.-J. BEYN AND J.-M. KLEINKAUF

This implies that un+1 = f ′(ξ)un has an exponential dichotomy on any interval J ⊂ Z
with solution operator

Φ(n, m) = f ′(ξ)n−m

and data (1, α, Ps), where

α := min(− ln λs, ln λu)(23)

and Ps is the projector onto Xs along Xu.
The local stable and unstable manifolds of ξ are defined as

W s
loc:={x ∈ ξ + V : fn(x) ∈ ξ + V for all n ≥ 0 and fn(x) → ξ as n → ∞},

Wu
loc:={x ∈ ξ + V : f−n(x) ∈ ξ + V for all n ≥ 0 and f−n(x) → ξ as n → ∞},

where V ⊂ Rk is a sufficiently small neighborhood of 0. By definition these sets are
positive and negative invariant, respectively. It is well known (see [16, Chapter 6])
that we may take V = Vs × Vu for suitable neighborhoods Vs ⊂ Xs, Vu ⊂ Xu of the
origin such that the local stable and unstable manifold of ξ may be represented as
graphs. We get

W s
loc = {ξ + xs + qs(xs) : xs ∈ Vs}, Wu

loc = {ξ + xu + qu(xu) : xu ∈ Vu},(24)

where the functions qs ∈ C1(Vs, Xu), qu ∈ C1(Vu, Xs) satisfy

qκ(0) = 0, q′
κ(0) = 0, κ = s, u.(25)

The global stable and unstable manifolds are then given by

W s =
⋃
n≤0

fn(W s
loc), Wu =

⋃
n≥0

fn(Wu
loc)

with the differentiable structure induced by W s,u
loc via the mapping f .

THEOREM 3.1. Let xZ be a homoclinic orbit of (19) with respect to a hyperbolic
fixed point ξ. Then the following assertions are equivalent.

(i) x0 is a transversal homoclinic point; i.e., the tangent spaces to the stable
and unstable manifolds at x0 satisfy

Tx0W
s ∩ Tx0W

u = {0}.(26)

(ii) The linear system

un+1 = f ′(xn)un(27)

has an exponential dichotomy on Z.
(iii) xZ is a regular zero of the operator Γ : SZ → SZ; i.e., Γ(xZ) = 0 and

Γ′(xZ) : SZ → SZ is a homeomorphism.
Proof. In [22, Definition 4.4] condition (ii) is used to define a transversal homo-

clinic point and the equivalence with (26) is proved later on [22, Proposition 5.6]. The
implication (ii)⇒(iii) is immediate from Lemma 2.4 since

Γ′(xZ)uZ = (un+1 − f ′(xn)un)n∈Z.

Let us assume (iii). Then we have

f ′(xn) − f ′(ξ) → 0 as n → ±∞
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COMPUTATIONS OF HOMOCLINICS FOR MAPS 1215

and Proposition 2.5 shows that (27) has exponential dichotomies on both Z− and Z+
with projectors of the same rank. By our assumption equation (27) has no nontrivial
bounded solution on Z, so Lemma 2.4 proves assertion (ii).

DEFINITION 3.2. A homoclinic orbit (xn)n∈Z with respect to a hyperbolic fixed
point ξ is called transversal iff it satisfies one of the equivalent conditions of Theo-
rem 3.1.

Next we consider the approximate equations (3), (4) on a finite interval J =
[n−, n+] and write them as

ΓJ(xJ) = 0, xJ ∈ SJ ,(28)

where ΓJ : SJ → SJ is defined by

ΓJ(xJ) = (xn+1 − f(xn)(n = n−, . . . , n+ − 1), b(xn− , xn+)).

We treat equation (28) with the help of the following approximate inverse function
theorem (cf. [25, section 3], [4, Lemma 3.1], [18, Lemma 4.7]).

PROPOSITION 3.3. Let F ∈ C1(Y, Z) with Banach spaces Y, Z and assume that
F ′(y0) is a homeomorphism for some y0 ∈ Y . Further, let constants ρ, κ, σ > 0 be
given with the following properties:

‖F ′(y) − F ′(y0)‖ ≤ κ < σ ≤ 1
‖F ′(y0)−1‖ for all y ∈ Bρ(y0),(29)

‖F (y0)‖ ≤ (σ − κ)ρ.

Then F (y) = 0 has a unique solution in Bρ(y0) and the following estimates hold:

‖y1 − y2‖ ≤ 1
σ − κ

‖F (y1) − F (y2)‖ for all y1, y2 ∈ Bρ(y0),(30)

‖F ′(y)−1‖ ≤ 1
σ − κ

for all y ∈ Bρ(y0).(31)

We can now state our main approximation theorem.
THEOREM 3.4. Let x̄Z be a transversal homoclinic orbit with respect to a hyperbolic

fixed point ξ of a diffeomorphism f ∈ C1(Rk, Rk). Assume b ∈ C1(R2k, Rk) satisfies

b(ξ, ξ) = 0(32)

and the map B ∈ L(Xs ⊕ Xu, Rk) defined by

B(xs + xu) = D1b(ξ, ξ)xs + D2b(ξ, ξ)xu(33)

is nonsingular.
Then there exist constants δ, C1, C2 > 0 and N ∈ N such that (28) has a unique

solution xJ in

Bδ(x̄|J) = {x ∈ SJ : ‖x̄|J − x‖∞ ≤ δ}
for all J = [n−, n+], −n−, n+ ≥ N and the following estimates hold:

‖Γ′
J(yJ)−1‖∞ ≤ C1 for all yJ ∈ Bδ(x̄|J),(34)

‖x̄|J − xJ‖∞ ≤ C2‖b(x̄n− , x̄n+)‖.(35)

Proof. We apply Proposition 3.3 with

Y = Z = SJ , y0 = x̄|J , F = ΓJ .
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1216 W.-J. BEYN AND J.-M. KLEINKAUF

We consider first

Γ′
J(x̄|J)uJ = (un+1 − f ′(x̄n)un(n ∈ J), BJuJ),

where BJuJ = D1b(x̄n− , x̄n+)un− + D2b(x̄n− , x̄n+)un+ , and show

‖Γ′
J(x̄|J)−1‖∞ ≤ C(36)

for n± sufficiently large. This will be done in two steps.
Step 1. For any sequence zn, n ∈ J̃ = [n−, n+ −1] there exist un, n ∈ J such that

un+1 − f ′(x̄n)un = zn, n ∈ J̃(37)

and ‖uJ‖∞ ≤ C‖zJ̃‖∞.
Step 2. Γ′

J(x̄|J)vJ = (0, r) has a unique solution vJ ∈ SJ for each r ∈ Rk and
‖vJ‖∞ ≤ C‖r‖.

Here C > 0 denotes some generic constant independent of n± and the right-hand
sides. The constants are chosen within the proof.

Suppose we have accomplished these two steps. Then for given zJ̃ and r ∈ Rk we
choose uJ as in Step 1 and let vJ solve

Γ′
J(x̄|J)vJ = (0, r − BJuJ)

as in Step 2. This implies

Γ′
J(x̄|J)(uJ + vJ) = (zJ̃ , r)

as well as

‖uJ + vJ‖∞ ≤ ‖uJ‖∞ + ‖vJ‖∞
≤ C(‖zJ̃‖∞ + ‖r − BJuJ‖∞)
≤ C(‖zJ̃‖∞ + ‖r‖ + ‖BJ‖ ‖uJ‖∞)
≤ C(‖zJ̃‖∞ + ‖r‖).

Thus we have shown the estimate (36).
For yJ ∈ Bδ(x̄|J) and δ sufficiently small we find

‖Γ′
J(y) − Γ′

J(x̄|J)‖∞ ≤ sup
n∈J

‖f ′(yn) − f ′(x̄n)‖
+ ‖D1b(yn− , yn+) − D1b(x̄n− , x̄n+)‖
+ ‖D2b(yn− , yn+) − D2b(x̄n− , x̄n+)‖

≤ 1
2C

.

Taking σ = 1
C , κ = 1

2C , and ρ = δ in (29) we finally obtain from assumption (32)

‖ΓJ(x̄|J)‖∞ = ‖b(x̄n− , x̄n+)‖ ≤ δ

2C

for n± sufficiently large. Proposition 3.3 then yields the existence of the solution xJ

in Bδ(x̄|J) and the estimate (35) follows from (30) by setting y1 = x̄|J , y2 = xJ .
Proof of Step 1. Let (K, α, Pn) be the dichotomy data associated (by Theorem 3.1)

with the linear system

un+1 = f ′(x̄n)un, n ∈ Z.
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COMPUTATIONS OF HOMOCLINICS FOR MAPS 1217

We extend zJ̃ by setting zn = 0 for n ∈ Z\ J̃ . Then we use Theorem 3.1(iii) and solve

Γ′(x̄)uZ = zZ.

Obviously, un(n ∈ J) solves (37) and satisfies

‖u|J‖∞ ≤ ‖uZ‖∞ ≤ C‖zZ‖∞ = C sup
n∈J̃

‖zn‖.

Proof of Step 2. We notice that Proposition 2.5 implies

Pn → Ps as n → ±∞.

For |n| large we have ‖Pn − Ps‖ < 1; hence the matrices En = I + Ps − Pn and
Dn = I − Ps + Pn are nonsingular with

‖E−1
n ‖, ‖D−1

n ‖ ≤ 1
1 − ‖Pn − Ps‖(38)

and we find Rk = R(Ps) ⊕ N (Pn) = N (Ps) ⊕ R(Pn). Therefore En : R(Pn) →
R(Ps) = Xs is bijective and satisfies

‖(I − Ps)E−1
n xs‖ = ‖(Pn − Ps)E−1

n xs‖ ≤ ‖Pn − Ps‖
1 − ‖Pn − Ps‖‖xs‖ for xs ∈ Xs.(39)

Similarly, Dn : N (Pn) → N (Ps) = Xu is bijective and

‖PsD
−1
n xu‖ ≤ ‖Pn − Ps‖

1 − ‖Pn − Ps‖‖xu‖ for xu ∈ Xu.(40)

Using the solution operator Φ(n, m) for equation (27) we may write vJ as

vn = Φ(n, n−)η− + Φ(n, n+)η+, n ∈ J,(41)

where η− ∈ R(Pn−) , η+ ∈ N (Pn+) are to be determined from the boundary condi-
tions

r = BJvJ(42)
= D1b(x̄n− , x̄n+)(η− + Φ(n−, n+)η+)

+ D2b(x̄n− , x̄n+)(η+ + Φ(n+, n−)η−).

By the exponential dichotomy we have

‖Φ(n, n±)η±‖ ≤ Ke±α(n−n±)‖η±‖.(43)

It is convenient to change coordinates in (41) via

En−η− = xs ∈ Xs, Dn+η+ = xu ∈ Xu.(44)

We employ the linear map B from (33) and rewrite (42) as

r = B(xs + xu) + ρ+ + ρ−,(45)

where

ρ+ = (D1b(x̄n− , x̄n+) − D1b(ξ, ξ))xs

+ D1b(x̄n− , x̄n+)((I − Ps)E−1
n−xs + Φ(n−, n+)η+),

ρ− = (D2b(x̄n− , x̄n+) − D2b(ξ, ξ))xu

+ D2b(x̄n− , x̄n+)(PsD
−1
n+

xu + Φ(n+, n−)η−).
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1218 W.-J. BEYN AND J.-M. KLEINKAUF

Using (38), (39), (40) and (43), (44) we obtain

‖ρ+‖ + ‖ρ−‖ ≤ εJ(‖xs‖ + ‖xu‖) with εJ → 0 as n± → ±∞.

Therefore assumption (33) implies that the linear equation (45) has a unique solution
(xs, xu) which satisfies

‖xs‖ + ‖xu‖ ≤ C‖r‖
with a constant C independent of n±. We then define η−, η+ by (44) and vn by
(41). From equation (38) and the exponential dichotomies we obtain the estimate of
Step 2.

Remark 3.5. Assuming that ‖Γ′
J(xJ)‖∞ is moderate, the constant C1 in (34) is

the crucial quantity that measures the condition of the nonlinear system (28). A more
quantitative analysis (see [18]) shows that C1 depends linearly on 1

γ , where γ is the
angle between the stable and unstable manifold at x̄0. Therefore this constant may
also be taken as a measure of the transversality of the orbit.

Inequality (35) shows that the approximation error ‖x̄|J − xJ‖∞ is determined
by the boundary error

‖b(x̄n− , x̄n+)‖ = ‖b(x̄n− , x̄n+) − b(ξ, ξ)‖.

We say that the boundary conditions (4) are of order (p−, p+) if there exists a con-
stant C such that for all −n−, n+ sufficiently large

‖b(x̄n− , x̄n+) − b(ξ, ξ)‖ ≤ C(‖x̄n− − ξ‖p− + ‖x̄n+ − ξ‖p+).(46)

In the hyperbolic case we have

‖x̄n − ξ‖ ≤ Cλn
s , n ≥ 0, ‖x̄n − ξ‖ ≤ Cλn

u, n ≤ 0,(47)

where λs < 1 < λu are the spectral bounds for f ′(ξ) as in the beginning of this
section.

From (35), (46), and (47) we then obtain the estimate

‖x̄|J − xJ‖∞ ≤ C(λp+n+
s + λp−n−

u ).

Clearly, the periodic boundary conditions (5) are of order (1, 1) since

‖b(x̄n− , x̄n+)‖ = ‖x̄n+ − x̄n−‖ ≤ ‖x̄n+ − ξ‖ + ‖x̄n− − ξ‖.

Moreover, they always satisfy conditions (32) and (33).
Approximations of second order are obtained from projection boundary conditions

given by

b(xn− , xn+) = (b−(xn−), b+(xn+)) = (QT
s (xn− − ξ), QT

u (xn+ − ξ)),(48)

where the columns of Qs ∈ Rk,ks and Qu ∈ Rk,ku , ks + ku = k provide a basis of the
stable and unstable subspace of f ′(ξ)T , respectively. More formally, we have a block
diagonalization (

QT
s

QT
u

)
f ′(ξ) =

(
Ls 0
0 Lu

) (
QT

s

QT
u

)
,(49)

where |λ| < λs < 1 for all eigenvalues λ of Ls ∈ Rks,ks and 1 < λu < |λ| for all
eigenvalues λ of Lu ∈ Rku,ku . Transforming (49) into

f ′(ξ)(Es Eu) = (Es Eu)
(

Ls 0
0 Lu

)
, where

(
QT

s

QT
u

)
(Es Eu) = I,
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COMPUTATIONS OF HOMOCLINICS FOR MAPS 1219

we find for the projectors

Ps = EsQ
T
s , Pu = EuQT

u .

Therefore the projection boundary conditions require

xn− ∈ ξ + Xu, xn+ ∈ ξ + Xs,

which means that xn− , xn+ lie in the linear approximation of the unstable and stable
manifold at ξ.

The second order easily follows from (25). For f ∈ Cl(Rk, Rk) the functions qs,
qu in (24) are Cl-smooth. Hence for l ≥ 2 we find for x ∈ Wu

lox by a Taylor expansion

‖QT
s (x − ξ)‖ = ‖QT

s (xu + qu(xu))‖ = ‖QT
s qu(xu)‖

≤ C‖xu‖2 ≤ C(‖x − ξ‖ + ‖qu(xu)‖)2 ≤ C‖x − ξ‖2

and a similar estimate holds for x ∈ W s
loc.

We notice that the projection boundary conditions also satisfy (32), (33) since

B(xs + xu) =
(

QT
s xs

QT
u xu

)
, xs ∈ Xs = R(Es), xu ∈ Xu = R(Eu)

is nonsingular.
COROLLARY 3.6. Let x̄Z be a transversal homoclinic orbit as in Theorem 3.4.

Then the conclusions of Theorem 3.4 hold for periodic as well as for projection bound-
ary conditions. The corresponding finite orbits xπ

[n−,n+] (periodic) and xp
[n−,n+] (pro-

jection) satisfy for all n ∈ {n−, . . . , n+}
‖x̄n − xπ

n‖ ≤ C(λn+
s + λn−

u ), ‖x̄n − xp
n‖ ≤ C(λ2n+

s + λ2n−
u ).

For the second estimate we assume f ∈ C2.
If, in the periodic case, we take n± = ±N , then (xπ

0 , xπ
N ) is a period-2 orbit of fN .

The point xπ
N is contained in the invariant set M on which fN exhibits shift dynamics

according to Smale’s theorem. It is provided that N is sufficiently large such that
the approximation error is sufficiently small and Palmer’s constructive proof of this
theorem (see [22]) works.

To conclude this section we outline the extension of our results to orbits that
connect two fixed points of a parametrized system

xn+1 = f(xn, µ), n ∈ Z, f ∈ C1(Rk × Rp, Rk),(50)

where f(·, µ) is a C1-diffeomorphism for all µ ∈ Rp.
Assume that (x̄Z, µ̄) ∈ SZ × Rp is a solution of (50) such that

x̄n → ξ± as n → ±∞,(51)

where ξ± are hyperbolic fixed points of f(·, µ̄) with stable and unstable dimensions
k±s, k±u = k − k±s. Introducing the operator

Γ :
SZ × Rp → SZ
(xZ, µ) 7→ (xn+1 − f(xn, µ))n∈Z

we find

Γ′(x̄Z, µ̄)(xZ, µ) = LxZ − Rµ,
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1220 W.-J. BEYN AND J.-M. KLEINKAUF

where

LxZ = (xn+1 − fx(x̄n, µ̄)xn)n∈Z, Rµ = (fµ(x̄n, µ̄)µ)n∈Z.

By Proposition 2.5 we have exponential dichotomies for L on Z± with data
(K±, α±, P±

n ) and rankP±
n = k±s. By Lemma 2.3 the operator is Fredholm of in-

dex k+s − k−s in the space SZ and hence by the bordering lemma (see [4]) Γ′(x̄Z, µ̄)
is Fredholm of index k+s − k−s + p. We want (x̄Z, µ̄) to be a regular zero of Γ which
leads us to the following definition.

DEFINITION 3.7. The connecting orbit (x̄Z, µ̄) is called transversal if the following
conditions hold:

(i) p = k−s − k+s ≥ 0,
(ii) LxZ + Rµ = 0, xZ ∈ SZ, µ ∈ Rp ⇒ xZ = 0, µ = 0.
Condition (i) yields that Γ′(x̄Z, µ̄) is Fredholm of index 0 and (ii) implies that its

null space is trivial. We notice that this definition is in accordance with the homoclinic
case where k−s = k+s, p = 0; see Definition 3.2.

Assuming (i) we may express (ii) in Definition 3.7 equivalently by the following
two conditions:

(i)

R(P+
0 ) ∩ N (P−

0 ) = {0},(52)

(ii) the matrix

E =
∑
n∈Z

ΦT
nfµ(x̄n, µ̄) ∈ Rp,p(53)

is nonsingular, where the columns of Φn ∈ Rk,p, (n ∈ Z) form a basis of N (L∗).
It is clear that (ii) implies N (L) = {0} and hence (52) by (12). From (i) and

Lemma 2.3 we then find

dimN (L∗) = codimR(L) = k − (k+s + (k − k−s)) = p

and (53) is a consequence of (ii) and (13). Conversely, assume (52), (53) and let
LxZ + Rµ = 0 hold for some xZ ∈ SZ, µ ∈ Rp. Then (13) implies Eµ = 0 and hence
µ = 0 by (53). Therefore xZ ∈ N (L) holds and (52), (12) yield xZ = 0.

For the extension of Theorem 3.4 to the general case (50), (51) we consider the
approximate system

ΓJ(xJ , µ) := (xn+1 − f(xn, µ)(n = n−, . . . , n+), b(xn− , xn+ , µ)) = 0,(54)

where b ∈ C1(Rk × Rk × Rp, Rk+p).
THEOREM 3.8. Let (x̄Z, µ̄) be a transversal connecting orbit of the parametrized

system (50) with hyperbolic endpoints ξ±. Assume b ∈ C1(R2k+p, Rk+p) satisfies

b(ξ−, ξ+, µ̄) = 0

and the map B ∈ L(X−
s × X+

u , Rk+p) defined by

B(xs, xu) = D1b(ξ−, ξ+, µ̄)xs + D2b(ξ−, ξ+, µ̄)xu, xs ∈ X−
s , xu ∈ X+

u

is nonsingular. Here X−
s is the stable subspace of fx(ξ−, µ̄) and X+

u is the unstable
subspace of fx(ξ+, µ̄).
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COMPUTATIONS OF HOMOCLINICS FOR MAPS 1221

Then there exist constants δ, C > 0 and N ∈ N such that (54) has a unique
solution (xJ , µJ) in Bδ((x̄|J , µ̄)) for all J = [n−, n+], −n−, n+ ≥ N and the following
estimate holds:

‖x̄|J − xJ‖∞ + ‖µ̄ − µJ‖ ≤ C‖b(x̄n− , x̄n+ , µ̄)‖.

The proof is quite similar to that of Theorem 3.4 and will be omitted. We notice
that B can be represented by a square matrix, since by the transversality condition (i)

dim(X−
s × X+

u ) = k−s + k+u = k−s − k+s + k = p + k.

The projection boundary condition (48) now depends on the parameter µ:

b(xn− , xn+ , µ) = (Qs(µ)T (xn− − ξ−(µ)), Qu(µ)T (xn+ − ξ+(µ))).

Here ξ±(µ) are hyperbolic fixed points of f(·, µ) and the columns of Qs(µ) ∈ Rk,k−s ,
Qu(µ) ∈ Rk,k+u form bases of the stable subspace of fx(ξ−(µ), µ)T and the unstable
subspace of fx(ξ+(µ), µ)T , and all the quantities depend smoothly on µ.

So far we considered the parameters µ in (50), (51) to be part of the unknowns
that have to be determined by numerical calculation, that is, by Newton’s method
applied to (54). If there are more than k−s − k+s parameters in the system then we
can use these for the continuation of connecting orbits of type (k−s, k+s). This will
be done in the next section for the continuation of homoclinic orbits.

4. Numerical implementation and applications. In the following examples
we compute approximate homoclinic orbits by applying Newton’s method to the non-
linear system

ΓJ(yJ) := (b(yn− , yn+), yn+1 − f(yn)(n = n−, . . . , n+ − 1)) = 0.(55)

This is justified by Theorem 3.4.
An iteration vector yJ ∈ SJ for (55) is accepted if for a given tolerance ε > 0 the

inequality

‖Γ′
J(yJ)−1ΓJ(yJ)‖∞ ≤ ε(1 + ‖yJ‖∞)

holds. In each Newton step we use LU decomposition with absolute column pivoting
and take advantage of the sparsity pattern of Γ′

J(yJ). With the exception of Example 2
(Duffing map), we use ε = 10−15. The machine precision used in all computations is
about 10−16.

We mainly use projection boundary conditions as in (48) except for the first
example, where we also test the periodic boundary conditions (5).

In all examples that follow we have no explicitly given transversal homoclinic
orbit. Actually, we do not know of any suitable example with explicit homoclinic
orbits and an analytic map f . Therefore we take a zero of Γ[n̄−,n̄+] with very large
values of −n̄−, n̄+ as “exact orbit.” For the error analysis we then compare this orbit
to various shorter orbits obtained for moderate values of n−, n+. We always use the
Euclidean norm in Rk.

Example 1 (Hénon map). For b 6= 0 the map

f(x, y) = (1 + y − ax2, bx)

is a C∞-diffeomorphism and it has two fixed points for (b − 1)2 > −4a 6= 0 given by

x± =
b − 1 ± √

(b − 1)2 + 4a

2a
, y± = bx±.
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FIG. 1. Parts of the stable and unstable manifold for Hénon’s map together with points of the
“exact orbit.”

In the following we take ξ = (x+, y+) and choose the parameters

a = 1.4, b = 0.3.(56)

We get ξ = (0.631354, 0.189406) as the hyperbolic fixed point and

σ(f ′(ξ)) = {0.1559463, −1.923739}
as eigenvalues of f ′(ξ). We set λs = 0.155947 and λu = 1.92373. For more details
about the Hénon map see [14, section 15.2], [8, section 2.9].

Figure 1 shows parts of the stable and unstable manifolds of ξ. They are obtained
by starting forward and backward iterations on the linear approximation of the unsta-
ble and stable manifolds at ξ in some neighborhood of ξ. We show the orbit segment
x̄−100,100 that was taken as “exact orbit” for comparison. It is calculated using the
starting vector v[−100,100] with

vi =
{

0 if i = 0,
ξ otherwise.(57)

To analyze the approximation error we compute zeros y[n−,n+] of Γ[n−,n+] starting
Newton’s methods with the truncated “exact orbit” x̄[n−,n+]. For these solutions let

e(i, n−, n+) := log10 ‖yi − x̄i‖∞

be the local logarithmic error at n− ≤ i ≤ n+ and let

e∞(n−, n+) := max
n−≤i≤n+

e(i, n−, n+)

be the global logarithmic error.
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FIG. 2. Global error e∞(−n, n) with n varied using periodic and projection boundary conditions
for Hénon’s map.

In Figure 2 we compare the global error e∞(−n, n) obtained for the projection
and the periodic boundary conditions. For the projection boundary conditions we
get a slope of nearly −2 log10 λu, while the slope for periodic boundary conditions is
nearly − log10 λu as predicted by Corollary 3.6. For the remaining tests we always
use projection boundary conditions.

Figure 3 shows the behavior of the local error along the approximate homoclinic
orbits. The right boundary is fixed and the left boundary is varied. We notice that
the maximal error occurs at the boundaries. A more detailed study of the local
error at the boundaries is given in Figure 4. The local error e(n, n, 4) at the left
boundary has nearly the expected slope of 2 log10 λu, while the local error e(4, n, 4)
at the right boundary is nearly constant. So the global error cannot pass below this
value e(4, n, 4). The dependence of the global error on both variables n− and n+ is
illustrated in Figure 5.

Example 2 (Duffing map). We consider the forced Duffing equation

u̇ = v, v̇ = u − u3 − βv + γ cos(ωt)(58)

with ω 6= 0 and define f as the period map; that is, f(x, y) is the value of the solution
of (58) at t = 2π

ω with initial values (u(0), v(0)) = (x, y). Because of the smoothness
of (58) the map f is a C∞-diffeomorphism. We choose the parameters as

β = 0.25, γ = 0.3, ω = 1.0.

The initial value problems are solved with a code called “ode” from NETLIB. This
code is an implementation of an Adams method by Gordon and Shampine and its
tolerance is set to 10−15. The Jacobian of f is calculated by solving the variational
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FIG. 3. Local error e(i, n, 4) with n = 0, . . . , 29 varied and i scaled to [0, 1] for Hénon’s map.
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FIG. 4. Global error and local errors at the boundaries varying the left boundary for Hénon’s map.
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FIG. 5. Global error with varied left and right boundary for Hénon’s map.

equation of (58) and the fixed point

ξ = (−0.14898822176, 0.018883591437)

of f is approximated using Newton’s method with tolerance 10−14. For the eigenvalues
of f ′(ξ) we get the bounds

λs = 0.000901886, λu = 230.494.

For more details about the Duffing map see [13, section 2.2].
Due to the extreme values of the Floquet multipliers λs, λu it is sufficient to take

x̄[−15,15] as “exact orbit.” To compute it, Newton’s method is started at v[−15,15] with

vi =

 (−0.284, −0.0961) if i = 0,
(−0.3725, 0.254) if i = 1,

ξ otherwise.

We set the tolerance to 10−13 and use projection boundary conditions.
In Figure 6 we show parts of the stable and unstable manifolds of ξ together

with the “exact orbit” x̄[−15,15]. The behavior of the approximation errors was quite
similar to Hénon’s map (Figures 2–5), so we do not display them here.

We investigate for this example how the error depends on the perturbation of the
boundary condition. Let Qs, Qu and b+ be as in (48). We set

b−(yn− , ϕ) = QT
s

(
cos ϕ sinϕ

− sinϕ cos ϕ

)
(yn− − ξ)

and use the “rotated” boundary condition

bϕ(yn− , yn+) = (b−(yn− , ϕ), b+(yn+)).

Calculating zeros of Γ[−2,5] for various values of ϕ gives the global errors shown in
Figure 7. We observe a sharp peak at ϕ = 0 which clearly shows that the higher-order
convergence from section 3 only occurs at the accurate projection angle.
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FIG. 6. Parts of the stable and unstable manifold together with points of the “exact orbit” for
the Duffing map.

-16

-14

-12

-10

-8

-6

-4

-2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

gl
ob

al
 lo

ga
ri

th
m

ic
 e

rr
or

FIG. 7. Global error e∞(−2, 5) using a perturbed left projection boundary condition for the
Duffing map.
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TABLE 1
Some numbers of the “exact orbit” (x̄n, ȳn, z̄n)n∈{−200,...,200} for a 3D-Hénon map.

n x̄n ȳn z̄n

−6 0.807797 0.928589 0.856507
−5 1.004416 0.807797 0.928589
−4 0.669725 1.004416 0.807797
−3 1.193808 0.669725 1.004416
−2 0.276148 1.193808 0.669725
−1 1.524660 0.276148 1.193808

0 −0.566445 1.524660 0.276148
1 1.161985 −0.566445 1.524660
2 0.507189 1.161985 −0.566445
3 0.972826 0.507189 1.161985
4 0.802205 0.972826 0.507189
5 0.908624 0.802205 0.972826
6 0.866250 0.908624 0.802205

Example 3 (3D-Hénon map). Changing variables x 7→ x̃
a , y 7→ bỹ

a for a 6= 0,
Hénon’s map is transformed to f̃(x̃, ỹ) = (a+ bỹ − x̃2, x̃); see [14, Example 15.11]. We
define a 3D-Hénon map as

f(x, y, z) = (a + bz − x2, x, y).

As with the original Hénon map it is a C∞-diffeomorphism for b 6= 0 and has two
fixed points for (b − 1)2 > −4a 6= 0 given by

x± =
b − 1 ± √

(b − 1)2 + 4a

2
, z± = y± = x±.

We use the same parameter values as above (see (56)) and consider the fixed point

ξ = (0.883896, 0.883896, 0.883896).

This fixed point is hyperbolic with eigenvalues

σ(f ′(ξ)) = {0.374238, −0.483270, −1.65876},

so we use

λs = 0.48328, λu = 1.6587.

For these calculations we use projection boundary conditions and the “exact orbit”
is computed by starting at v[−200,200] defined as in (57). Some numbers are given in
Table 1.

In Figure 8 we show the global error and the local errors at the boundaries when
both boundaries are varied, like Figure 4 for the original Hénon. We notice that the
slope of e(−n, −n, n) is −2 log10 λu while the slope of e(n, −n, n) is oscillating around
−2 log10 λs.

Continuation of homoclinic orbits. Let us assume that the map f in Theo-
rem 3.1 depends smoothly on a parameter λ ∈ R (see also (50)):

xn+1 = f(xn, λ), n ∈ Z.(59)

If this system has a transversal homoclinic orbit at some value of λ then it is easy
to show by Theorem 3.1 and the implicit function theorem that a local branch of
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FIG. 8. Local errors versus endpoints of the interval for the approximate homoclinic orbit of a
3D-Hénon map subject to projection boundary conditions.

transversal homoclinic orbits passes through the given one. Moreover, by an extension
of Theorem 3.4 one can show that there is a corresponding branch of approximating
finite-orbit segments.

To follow such branches numerically we employ a predictor-corrector method from
[1, Algorithm 3.3.7] and take care of the sparse matrix structure; see [1, Chapter 10].
The corrector is of Gauss–Newton type using Moore–Penrose inverses. Its tolerance
is set to 10−15.

In the following let

Ampl(y[n−,n+]) =

 n+∑
i=n−

‖yi − ξ‖2

 1
2

be the amplitude of an orbit segment y[n−,n+].
As a first example we revisit Hénon’s map. We take the same parameters and

starting vector for the first corrector step as in Example 1. The parameter b is
varied and projection boundary conditions are used. Figure 9 shows the result of the
numerical computation. In an amplitude versus parameter diagram we get a closed
loop of homoclinic orbits. A closer look at the numerical values shows that each point
of the homoclinic orbit describes a closed loop in phase space upon variation of b.

A remarkable feature is that nontransversal homoclinic orbits occur at the turning
points of the homoclinic loop. Due to the standard reparametrization during the
continuation procedure passing through these points poses no problems. We notice,
however, that the approximation properties of the finite orbits close to these turning
points are not covered by Theorem 3.4.
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FIG. 9. Following a branch for the Hénon map.

Example 4 (Euler map). Consider the continuous system

u̇ = v, v̇ = u − u2 + λv +
1
2
uv.(60)

Let f(x, y, λ, h) be the result of one Euler step for (60) with steplength h starting at
(x, y); that is,

f(x, y, λ, h) =
(

x + hy, y + h

(
x − x2 + λy +

1
2
xy

))
.(61)

In [3] the question was raised how such a map behaves when the continuous system
passes through a homoclinic bifurcation. For the continuous system (60) there exists
a homoclinic orbit based at ξ = (0, 0) for λ ≈ −0.429505849; see [4, Example 1].

The above question was largely solved in [10]. There it is shown that transversal
homoclinic orbits for the one-step map can occur for all sufficiently small stepsizes h
and they do so at most within an exponentially small wedge in the (h, λ)-plane. We
will explore this wedge to some extent.

In the following numerical experiment we fix h = 0.4 and start the branch of
homoclinic orbits for the Euler map (61) at the value λ = −0.7089493 suggested
by [3, section 2]. For the numerical results shown in Figure 10 we used projection
boundary conditions and orbit segments with −n− = n+ = 300. Since the homoclinic
orbits occur only in a very small λ-interval we used

µ(λ) = (λ + 0.708949271858) · 1013

for the horizontal axis.
Here, as with the Hénon map, we find a closed loop of homoclinic orbits. The

two turning points mark the boundary of the above-mentioned wedge. Although the
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FIG. 10. Closed loop of homoclinic orbits for Euler’s map. The amplitude is scaled to
(Ampl(y[−300,300]) − 4.3065375071) · 1010.

homoclinic orbits have extremely weak transversality there are no problems with the
continuation method since λ is never taken for parametrization.

In order to demonstrate the weak transversality we estimate (following [12, section
3.5.4]) at each point of the branch the norms of the inverses of the linearized operator
obtained by fixing the parameter λ; that is,

Γ′
[n−,n+](y[n−,n+](λ))−1.

These estimates are shown in Figure 11. The norms are quite large and, as we expect,
they grow towards the turning points. This indicates the small angle between stable
and unstable manifolds; see Remark 3.5. In contrast to this, the norms of the inverses
of the matrices used to calculate the Moore–Penrose inverses which occur during the
continuation are quite moderate (≤ 20).

A remarkable feature of the current loop is that after one turning round with
the continuation procedure we get the same orbit in phase space but with the points
yn being shifted to yn+1. In fact this is only true in a strict sense for the infinite
orbit xZ of (59), while there must be a deviation for the finite orbits obtained numer-
ically. However, this deviation is so small that it does not show up in the graphics in
Figure 10.

A consequence of the shift after one turn is that all points of the homoclinic orbits
lie on a common curve in (x, y, λ)-space. This curve is shown in Figure 12. It was
obtained by plotting the points y−40 during several turns of the continuation method.
If λ is between the two turning points any horizontal cut through this curve gives two
orbits which exist for the particular parameter value. For the sake of visualization, in
Figure 12 we have deactivated the stepsize adaption during the continuation and we
have drawn vertical lines at every 40th point.
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FIG. 11. The estimated norms of the inverses of the linearized operator obtained by fixing the
parameter λ for the Euler map.
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FIG. 12. The homoclinic crown: a curve followed by one point of a homoclinic orbit for the
Euler map after several turns of the closed loop. The marks indicate the initial homoclinic orbit.

We finally remark that the same phenomenon of a closed loop with shifted orbits
occurs for Hénon’s map when we choose parameter values different from those in (56);
for example, a = 1.4, b = −0.3.

5. A shadowing result for discrete homoclinic orbits. In this section we
reverse the question considered in the theorems of section 3. We assume that finite-
orbit segments of finite length which satisfy (28) are given and we want to conclude
the existence of a transversal homoclinic orbit.
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One such result has been derived in [18, section 4.4]. It assumes a sequence of
solutions xJ that converge uniformly as J grows such that the linearizations about
xJ have uniformly bounded inverses; see (34). In this way Theorem 3.4 can be turned
into an equivalence result.

Our aim here is to avoid these somewhat restrictive assumptions on an infinite
sequence of orbits and to try to work with a single finite orbit instead. For that
purpose we specialize (28) to have separated boundary conditions as in (6):

ΓJ(xJ) = (xn+1 − f(xn)(n = n−, . . . , n+), b−(xn−), b+(xn+)) = 0.(62)

We assume that b− ∈ C1(Rk, Rks), b+ ∈ C1(Rk, Rku), where ks and ku are
the dimensions of the stable and unstable subspace Xs and Xu of f ′(ξ), and ξ is a
hyperbolic fixed point of the C1-diffeomorphism f . Moreover, we assume

b−(ξ) = 0, b+(ξ) = 0,(63)
N (b′

−(ξ)) = Xu, N (b′
+(ξ)) = Xs,(64)

b′
−(ξ)|Xs

, b′
+(ξ)|Xu

are nonsingular.(65)

Assumptions (64) and (65) imply that the boundary conditions are at least of or-
der (2, 2). In particular, (63)–(65) are satisfied for the projection boundary condi-
tions (48).

In order to avoid interrupting the argument we begin with a perturbation lemma
for the linear case which will be an important tool in the proof of our main result.

LEMMA 5.1. Let A ∈ Rk,k be hyperbolic with stable and unstable projectors Ps and
Pu = I − Ps and let α > 0 and the norm ‖ ‖ be chosen so that (20), (21), (22), and
(23) hold with A instead of f ′(ξ). Furthermore, let ρ > 0 and matrices An, n ≤ −1
be given with

‖An − A‖ ≤ ρ for all n ≤ −1.

Then any bounded solution xZ− of

xn+1 − Anxn = 0, n ≤ −1

satisfies

‖xn‖ ≤ 1 + e−α

1 − e−α
ρ‖xZ−‖∞ + eαn‖Pux0‖ for all n ≤ 0(66)

and

‖Psx0‖ ≤ 1 + e−α

1 − e−α
ρ‖xZ−‖∞.

Proof. By Lemma 2.2 with J = Z− the equation

yn+1 − Ayn = (An − A)xn, n ≤ −1, Puy0 = 0

has a unique bounded solution yZ− and for n ≤ 0 we have the estimate

‖yn‖ ≤ 1 + e−α

1 − e−α
sup
n≤0

‖(An − A)xn‖ ≤ 1 + e−α

1 − e−α
ρ‖xZ−‖∞.(67)

The sequence zn = yn − xn, n ≤ 0 is bounded and satisfies zn+1 − Azn = 0, n ≤ −1;
hence Psz0 = 0 and

‖zn‖ ≤ eαn‖z0‖ = eαn‖Pux0‖, n ≤ 0.

Combining this with (67) gives the desired estimates.
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THEOREM 5.2. Let the above assumptions hold. Then for any constant C > 0
there exists an ε0 > 0 such that for each ε ∈ (0, ε0] we find a δ = δ(ε, C) > 0 with the
following conclusions. If x̄J , J = [n−, n+] is a solution of (62) which satisfies

‖x̄J‖∞ ≤ C,(68)
‖Γ′

J(x̄J)−1‖∞ ≤ C,(69)
‖x̄n± − ξ‖ ≤ δ,(70)

then there exists a unique transversal homoclinic orbit xZ of f with respect to ξ sat-
isfying

‖x̄J − x|J‖ ≤ ε.(71)

Remark 5.3.
1. There are no explicit assumptions made on −n−, n+ being large but, of course,

the inequality (70) requires this in practice. Moreover, the homoclinic orbit xZ may
be trivial unless we know that ‖x̄n − ξ‖ > ε holds for at least one n ∈ J .

2. As the proof will show, we can weaken the assumption ΓJ(x̄J) = 0 by

‖ΓJ(x̄J)‖∞ ≤ δ.

In this sense the theorem gives a shadowing result (see [22, Theorem 3.5]). It is of a
special type, however, since we shadow a finite orbit by an infinite one.

3. The assumptions (64), (65) will be crucial in our proof. It seems likely that
condition (64) can be dropped and more general boundary conditions can be allowed
as in Theorem 3.4 and its converse in [18]. But we don’t know of any proof or
counterexample.

Proof. We assume C > 0 to be given as in the theorem and we will collect the
various conditions on ε0 = ε0(C) and δ = δ(ε, C), 0 < ε ≤ ε0 during the proof. Let
δ1 > 0 be such that the local stable and unstable manifolds of ξ in the ball

Bδ1(ξ) = {x ∈ Rk : ‖x − ξ‖ ≤ δ1}
have a representation as in (24) with Vs = Bδ1(0) ∩ Xs and Vu = Bδ1(0) ∩ Xu. Let
Ps be the projector onto Xs along Xu and Pu = I − Ps. By the choice of norms we
have ‖Ps‖, ‖Pu‖ ≤ 1.

Then an element x ∈ Bδ1(ξ) belongs to Wu
loc iff it satisfies the boundary condition

Ps(x − ξ) − qu(Pu(x − ξ)) = 0.

Because of (65) this is equivalent to

B−(x) := b′
−(ξ)(Ps(x − ξ) − qu(Pu(x − ξ))) = 0.(72)

With (64) we have

B′
−(x) = b′

−(ξ)(Ps − q′
u(Pu(x − ξ))Pu) = b′

−(ξ) − b′
−(ξ)q′

u(Pu(x − ξ))Pu(73)

and (25) implies

B′
−(ξ) = b′

−(ξ).

Similarly, x ∈ W s
loc is characterized by

B+(x) := b′
+(ξ)(Pu(x − ξ) − qs(Ps(x − ξ))) = 0(74)

and
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B′
+(ξ) = b′

+(ξ)

holds.
We construct the homoclinic orbit by solving the “boundary value problem”

Γ̃J(xJ) = 0,(75)

where Γ̃ : SJ → SJ is defined by

Γ̃J(xJ) = (xn+1 − f(xn)(n = n−, . . . , n+ − 1), B(xn− , xn+))

with B(xn− , xn+) = (B−(xn−), B+(xn+)). We apply Proposition 3.3 with Y = Z =
SJ with norm ‖ ‖∞, F = Γ̃J , y0 = x̄J , σ = 5

8C , κ = 1
4C , and ρ = ε. We have

‖Γ̃′
J(x̄J) − Γ′

J(x̄J)‖∞ = max(‖B′
−(x̄n−) − b′

−(x̄n−)‖, ‖B′
+(x̄n+) − b′

+(x̄n+)‖)
≤ max (‖b′

−(ξ) − b′
−(x̄n−)‖ + ‖b′

−(ξ)‖ ‖q′
u(Pu(x̄n− − ξ))‖,

‖b′
+(ξ) − b′

+(x̄n+)‖ + ‖b′
+(ξ)‖ ‖q′

s(Ps(x̄n+ − ξ))‖).

We choose ε0 such that ε0 ≤ 1
2δ1 and such that the following estimates hold for all

x ∈ B2ε0(0):

‖b′
−(ξ)‖ ‖q′

u(x)‖ ≤ 1
8C

, ‖b′
+(ξ)‖ ‖q′

s(x)‖ ≤ 1
8C

,(76)

‖b′
−(ξ) − b′

−(ξ + x)‖ ≤ 1
4C

, ‖b′
+(ξ) − b′

+(ξ + x)‖ ≤ 1
4C

,

where C is the constant in (69). For 0 < ε ≤ ε0 and δ ≤ ε we obtain by using (70)

‖Γ̃′
J(x̄J) − Γ′

J(x̄J)‖∞ ≤ 3
8C

and thus by (69) and the Banach lemma (see [17, Chapter 5, section 2, Theorem 4])

‖Γ̃′
J(x̄J)−1‖∞ ≤ 8

5
C =

1
σ

.

For ‖y − x̄J‖∞ ≤ ε we use (70), (76) and find the estimate

‖Γ̃′
J(y) − Γ̃′

J(x̄J)‖∞ ≤ max (‖b′
−(ξ)‖ ‖q′

u(Pu(yn− − ξ)) − q′
u(Pu(x̄n− − ξ))‖,

‖f ′(yn) − f ′(x̄n)‖(n = n−, . . . , n+ − 1),
‖b′

+(ξ)‖ ‖q′
s(Ps(yn+ − ξ)) − q′

s(Ps(x̄n+ − ξ))‖)

≤ 1
4C

= κ,

provided ε0 satisfies

max(‖f ′(x) − f ′(z)‖ : ‖x‖ ≤ C, ‖x − z‖ ≤ ε0) ≤ 1
4C

.

Finally, we obtain

‖Γ̃J(x̄J)‖∞ = max(‖B−(x̄n−)‖, ‖B+(x̄n+)‖)
≤ max (‖b′

−(ξ)‖(‖x̄n− − ξ‖ + ‖qu(Pu(x̄n− − ξ))‖),
‖b′

+(ξ)‖(‖x̄n+ − ξ‖ + ‖qs(Ps(x̄n+ − ξ))‖))

≤ 3ε

8C
= (σ − κ)ρ

if δ satisfies

‖b′
−(ξ)‖δ ≤ ε

4C
, ‖b′

+(ξ)‖δ ≤ ε

4C
.
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Notice that by (76) and (70)

‖b′
−(ξ)‖ ‖qu(Pu(x̄n− − ξ))‖ ≤ ‖b′

−(ξ))‖δ max(‖q′
u(x)‖ : ‖x‖ ≤ δ)

≤ δ

8C
≤ ε

8C
.

From Proposition 3.3 we conclude the existence of a unique solution yJ of (75) in
Bε(x̄J). Since

‖yn± − ξ‖ ≤ ‖yn± − x̄n±‖ − ‖x̄n± − ξ‖ ≤ ε + δ ≤ 2ε0 ≤ δ1,

yn− ∈ Wu
loc, respectively, yn+ ∈ W s

loc holds and the extended orbit yZ obtained by
iterating yn+1 = f(yn), n < n− or n ≥ n+ is homoclinic to ξ. Moreover, any
homoclinic orbit xZ with the property (71) satisfies ‖xn± −ξ‖ ≤ δ1 and hence satisfies
the boundary conditions (72), (74). This proves the uniqueness.

To show that yZ is transversal let us assume that it is nontransversal. By Defini-
tion 3.2, Theorem 3.1, and Lemma 2.4 there is a sequence xZ ∈ SZ such that

‖xZ‖∞ = 1, xn+1 − f ′(yn)xn = 0, n ∈ Z.(77)

Applying Lemma 5.1 to A = f ′(ξ), An = f ′(yn+n−) and with xn+n− instead of xn,
we get

‖Psxn−‖ ≤ 1 + e−α

1 − e−α
sup

n≤n−
‖f ′(yn) − f ′(ξ)‖ =: β−.(78)

In a similar way

‖Puxn+‖ ≤ 1 + e−α

1 − e−α
sup

n≥n+

‖f ′(yn) − f ′(ξ)‖ =: β+.

By the positive invariance of W s
loc and the negative invariance of Wu

loc we have

‖yn − ξ‖ ≤ 2ε0 for all n ≤ n− or n ≥ n+.

Furthermore,

Γ̃′
J(yJ)x|J = (0, . . . , 0, B′

−(yn−)xn− , B′
+(yn+)xn+)(79)

and as a by-product of Proposition 3.3 (see (31))

‖Γ̃′
J(yJ)−1‖∞ ≤ 1

ρ − κ
=

8
3
C.(80)

From (73), (76), (77), and (78) we obtain

‖B′
−(yn−)xn−‖ = ‖b′

−(ξ)(Ps − q′
u(Pu(yn− − ξ))Pu)xn−‖ ≤ ‖b′

−(ξ)‖β− +
1

8C
.

Finally, we impose on ε0 the restriction
1 + e−α

1 − e−α
max

‖x‖≤2ε0

(‖f ′(ξ) − f ′(ξ + x)‖) < min
(

1
16C‖b′−(ξ)‖ ,

1
16C‖b′

+(ξ)‖ ,
1
2

)
,(81)

which yields ‖B′
−(yn−)xn−‖ < 3

16C and similarly ‖B′
+(yn+)xn+‖ < 3

16C . Using these
estimates and (80) in (79) we obtain

‖x|J‖∞ <
1
2
.

In particular, ‖Puxn−‖ < 1
2 and the inequality (66) from Lemma 5.1 and (81) yield

‖xn‖ ≤ β− + eα(n−n−)‖Puxn−‖ ≤ β− +
1
2

< 1 for n ≤ n−.

In an analogous way we find ‖xn‖ < 1 for n ≥ n+ and thus arrive at a contradiction
to ‖xZ‖∞ = 1.
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